Lymphoma discrimination by computerized triple matrix analysis of list mode data from three-color flow cytometric immunophenotypes of bone marrow aspirates

Cytometry ◽  
2000 ◽  
Vol 41 (1) ◽  
pp. 9-18 ◽  
Author(s):  
R. Bartsch ◽  
M. Arland ◽  
St. Lange ◽  
Ch. Kahl ◽  
G. Valet ◽  
...  
2007 ◽  
Vol 131 (2) ◽  
pp. 282-287
Author(s):  
Dan Iancu ◽  
Suyang Hao ◽  
Pei Lin ◽  
S. Keith Anderson ◽  
Jeffrey L. Jorgensen ◽  
...  

Abstract Context.—Bone marrow (BM) examination is part of the staging workup of lymphoma patients. Few studies have compared BM histologic findings with results of flow cytometric immunophenotyping analysis in follicular lymphoma (FL) patients. Objective.—To correlate histologic findings with immunophenotypic data in staging BM biopsy and aspiration specimens of FL patients. Design.—Bone marrow biopsy specimens of untreated FL patients were reviewed. Histologic findings were correlated with 3-color flow cytometric immunophenotyping results on corresponding BM aspirates. Results.—Bone marrow biopsy specimens (with or without aspirates) of 114 patients with histologic evidence of FL in BM were reviewed. There were 76 bilateral and 38 unilateral biopsies performed, resulting in 190 specimens: 187 involved by FL and 3 negative (in patients with a positive contralateral specimen). The extent of BM involvement was <5% in 32 (17.1%), ≥5% and ≤25% in 102 (54.6%), >25% and ≤50% in 27 (14.4%), and >50% in 26 (13.9%) specimens. The pattern of involvement was purely paratrabecular in 81 (43.3%), mixed in 80 (42.8%), and purely nonparatrabecular in 26 (13.9%). Immunophenotyping was only performed unilaterally, on BM aspirates of 92 patients, and was positive for a monoclonal B-cell population in 53 (57.6%) patients. Immunophenotyping was more often negative when biopsy specimens showed FL with a purely paratrabecular pattern. For comparison, we assessed 163 FL patients without histologic evidence of FL in BM also analyzed by flow cytometric immunophenotyping. A monoclonal B-cell population was identified in 5 patients (3%). Conclusions.—Our data suggest that 3-color flow cytometric immunophenotyping adds little information to the evaluation of staging BM specimens of FL patients.


2008 ◽  
Vol 132 (5) ◽  
pp. 813-819
Author(s):  
Xiaohong Han ◽  
Jeffrey L. Jorgensen ◽  
Archana Brahmandam ◽  
Ellen Schlette ◽  
Yang O. Huh ◽  
...  

Abstract Context.—The immunophenotypic profile of basophils is not yet fully established, and the immunophenotypic changes in chronic myelogenous leukemia are not fully characterized. Objective.—To establish a comprehensive immunophenotypic spectrum of normal basophils and to assess the range of immunophenotypic aberrations of basophils in chronic myelogenous leukemia. Design.—Using 4-color flow cytometry, we compared the immunophenotypic profile of basophils in peripheral blood or bone marrow samples from 20 patients with no evidence of neoplasia to basophils from 15 patients with chronic myelogenous leukemia. Results.—Basophils in control cases were all positive for CD9, CD13, CD22, CD25 (dim), CD33, CD36, CD38 (bright), CD45 (dimmer than lymphocytes and brighter than myeloblasts), and CD123 (bright), and were negative for CD19, CD34, CD64, CD117, and HLA-DR. Basophils in all chronic myelogenous leukemia patients possessed 1 to 5 immunophenotypic aberrancies. The most common aberrancies were underexpression of CD38, followed by aberrant expression of CD64 and underexpression of CD123. CD34 and CD117 were present in cases with basophilic precursors. Myeloblasts showed a distinct immunophenotypic profile, as they typically expressed CD34 and CD117, showed dimmer expression (compared with basophils) of CD38, CD45, and CD123, and lacked expression of CD22. Conclusions.—Flow cytometric immunophenotyping can identify immunophenotypic aberrations of basophils in chronic myelogenous leukemia, and discriminate basophils from myeloblasts.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4462-4462
Author(s):  
Hideyoshi Noji ◽  
Tsutomu Shichishima ◽  
Masatoshi Okamoto ◽  
Kazuhiko Ikeda ◽  
Akiko Nakamura ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is considered to be an acquired stem cell disorder affecting all hematopoietic lineages, which lack GPI-anchored membrane proteins, such as CD59, because of abnormalities in the phosphatidylinositol glycan-class A (PIG-A) gene. Also, PNH is one disorder of bone marrow failure syndromes, including aplastic anemia and myelodysplastic syndrome, which are considered as pre-leukemic states. In this study, to know some characteristics of patients with de novo acute leukemia, we investigated expression of CD59 in leukemic cells from 25 patients (female: male=8: 17; mean age ± standard deviation, 57.8 ± 19.5 years) with de novo acute leukemia by single-color flow cytometric analysis. In addition, the PIG-A gene from CD59− leukemic cells sorted by FACS Vantage in 3 patients with acute leukemia was examined by sequence analysis. All the patients had no past history of PNH. Based on the French-American-British criteria, the diagnosis and subtypes of acute leukemia were determined. The number of patients with subtypes M1, M2, M3, M4, M5, and M7 was 1, 14, 2, 4, 2, and 2, respectively. Two of the patients were classified into acute myeloid leukemia with trilineage myelodysplasia from morphological findings in bone marrow. Chromosomal analyses presented abnormal karyotypes in 14 of 25 patients. Flow cytometric analyses showed that leukemic cells from 16 of 25 patients (64%) had negative populations of CD59 expression and the proportion of the populations was 63.3 ± 25.7%, suggesting the possibility that CD59− leukemic cells from patients with de novo acute leukemia might be derived from PNH clones. In fact, the PIG-A gene analyses showed that monoclonal or oligoclonal PIG-A mutations in coding region were found in leukemic cells from 3 patients with CD59− leukemic cells and all of the clones with the PIG-A mutations were minor. Then, various clinical parameters, including rate of complete remission for remission-induction chemotherapy, peripheral blood, bone marrow blood, and laboratory findings, and results of chromosomal analyses were statistically compared between 2 groups of patients with (n=16) and without (n=9) CD59− leukemic cells. The reticulocyte counts (10.5 ± 13.0 x 104/μl) and proportions of bone marrow erythroblasts (17.5 ± 13.9%) in patients with only CD59+ leukemic cells were significantly higher than those (2.5 ± 1.7 x 104/μl, p<0.05; and 5.6 ± 6.2%, p<0.01, respectively) in patients with CD59− leukemic cells. The proportions of bone marrow blasts (69.3 ± 21.1%) in patients with CD59− leukemic cells were significantly higher than those (45.5 ± 19.3%, p<0.02) in patients with only CD59+ leukemic cells. In conclusion, our findings indicate that leukemic cells derived from PNH clones may be common in de novo acute leukemia patients, suggesting that bone marrow failure may have already occurred in localized bone marrow even in de novo acute leukemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5036-5036
Author(s):  
Tove Isaacson ◽  
Andrzej Jakubowiak ◽  
Lloyd Stoolman ◽  
Usha Kota ◽  
William Finn ◽  
...  

Abstract Multiparameter flow cytometry is a useful tool for comprehensive immunophenotyping of plasma cell myeloma, and has been proposed as a sensitive method for the evaluation of minimal residual disease in patients following treatment. This study aimed to assess the value of flow cytometry in quantitation of residual disease, in comparison to routine morphologic examination of first-pull bone marrow aspirate smears, in myeloma patients post-therapy. Heparinized bone marrow aspirates were obtained from 27 treated patients with plasma cell myeloma. Cells were prepared for 5-color flow cytometric analysis within 24-hours of specimen draw. Surface membrane staining with anti-CD19, CD20, CD38, CD45, CD56, and CD138 was followed by ammonium chloride lysis of red cells. Fixed and permeabilized cells were analyzed for cytoplasmic light chains to confirm clonality. Data were acquired using an FC500 flow cytometer (Beckman-Coulter), analyzed with CXP software with plasma cells isolated based on bright CD38+ or CD138+ expression. A median of 97,639 cellular events (range 14,279 to 262,508) were collected per analysis. Flow cytometric enumeration of plasma cells was compared to 500-cell differential counts of Wright-Giemsa-stained first-pull aspirate smears from the same cases. The median plasma cell count as determined by flow cytometry was 0.5% (range 0–7.9%). The median plasma cell count estimated by morphologic review was 8.0% (range 0–84.4%). Flow cytometry underestimated the plasma cell content in all but one case. Clonal plasma cells expressed CD38 and CD138 in all cases; 87.5% (21/24) coexpressed CD56, 25% (6/24) coexpressed CD45, and 4.2% (1/24) coexpressed CD19. None was positive for CD20. Although detection of minimal residual disease after therapy for acute leukemia is routinely achieved by flow cytometric analysis, successful quantitation of minimal residual disease in treated myeloma patients using flow cytometry remains limited as it usually underestimates the plasma cell content of bone marrow samples compared to routine morphology of first-pull aspirates. We have observed that this holds true for both pre-treatment and post-treatment specimens. Causes for the discrepancy may include hemodilution of second-pull aspirates used for flow cytometry, fragility and loss of plasma cells during preparation for flow cytometry, and incomplete disaggregation of plasma cells from bone marrow spicules. With improved outcome of treatments, better and more reliable methods of detection of minimal residual disease are needed for optimal prognostic stratification. We are currently validating alternative methods, which may offer more sensitivity while at the same time allow more objectivity, for assessing the amount of minimal residual disease in myeloma patients.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3264-3264
Author(s):  
Hideyoshi Noji ◽  
Tsutomu Shichishima ◽  
Masatoshi Okamoto ◽  
Kazuhiko Ikeda ◽  
Akiko Nakamura ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is considered to be an acquired stem cell disorder affecting all hematopoietic lineages, which lack GPI-anchored membrane proteins, such as CD59, because of abnormalities in the phosphatidylinositol glycan-class A (PIG-A) gene. Also, PNH is one disorder of the bone marrow failure syndromes, including aplastic anemia and myelodysplastic syndrome, which are considered as pre-leukemic states. In this study, to know some condition of pre-leukemic states in patients with de novo acute leukemia, we investigated the expression of CD59 in leukemic cells from 25 patients (female: male=8: 17; mean age, 57.8 ± 19.5 years) with de novo acute leukemia by single-color flow cytometric analysis. In addition, the PIG-A gene from CD59− leukemic cells, sorted by FACS Vantage, in 10 patients with acute leukemia was examined by sequence analysis. All the patients had no past history of PNH. Based on the French-American-British criteria, the diagnosis and subtypes of acute leukemia were determined. The number of patients with subtypes M1, M2, M3, M4, M5, and M7 was 1, 14, 2, 4, 2, and 2, respectively. Two of the patients were classified into acute myeloid leukemia with trilineage myelodysplasia from morphological findings in bone marrow. Chromosomal analyses presented abnormal karyotypes in 14 of 25 patients. Flow cytometric analyses showed that leukemic cells from 16 of 25 patients (64%) had negative populations of CD59 expression and the mean proportion of the populations was 63.3 ± 25.7%, suggesting the possibility that CD59− leukemic cells from patients with de novo acute leukemia might be derived from PNH clones. In fact, the PIG-A gene analyses showed that single (n=4) or multiple (n=6) PIG-A mutations in coding region were found in leukemic cells from 10 patients with CD59− leukemic cells and all of the clones with the PIG-A mutations were statistically minor. Then, various clinacal parameters, including peripheral blood, bone marrow blood, and laboratory findings and the results of chromosomal analyses were statistically compared between 2 groups of patients with (n=16) and without CD59− leukemic cells (n=9). The reticulocyte counts (mean ± standard deviation; 10.5 ± 13.0 x 104/μl) and proportions of bone marrow erythroblast (17.5 ± 13.9%) in patients with only CD59+ leukemic cells were significantly higher than those in patients with CD59− leukemic cells (2.5 ± 1.7 x 10 4/μl; p<0.05 and 5.6 ± 6.2%; p<0.01, respectively). The proportions of bone marrow blasts (69.3 ± 21.1%) in patients with CD59− leukemic cells were significantly higher than that those in patients with only CD59+ leukemic cells (45.5 ± 19.3%; p<0.02). In conclusion, our findings indicate that leukemic cells derived from PNH clones may be fairly common in de novo acute leukemia patients, suggesting that bone marrow failure as pre-leukemic states may have already occurred in localized bone marrow even in de novo acute leukemia.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2275-2282 ◽  
Author(s):  
RP Cleveland ◽  
YC Liu

Flow cytometry was used to assess CD4 expression in 62 consecutive bone marrow specimens from patients with a variety of clinical conditions. Using a lysed-whole-blood technique for labeling with monoclonal antibodies, two populations of CD4+ cells were identified within the lymphocyte/blast-cell fraction in 58 (94%) of these specimens. These consisted of (1) a population of T helper cells with high density expression of CD4 and (2) a second population of cells with low-density expression of CD4, which ranged from 1% to 36% of the gated cells. This latter population was present regardless of age, sex, or clinical condition including 21 of 21 specimens (100%) categorized as unremarkable bone marrows both morphologically and by flow cytometry and in four of four patients (100%) with human immunodeficiency virus- type 1 (HIV-1) infection. Coexpression of the erythroid lineage marker, glycophorin A, with the majority of cells in this second population was demonstrated in all 11 randomly selected samples using two-color flow cytometric analysis. These cells also expressed low levels of the myeloid markers, CD13 and CD33, but CD34 expression could not be demonstrated. These results provide evidence for expression of CD4 on cells of erythroid lineage in human marrow, and offer a potential mechanism for direct infection of erythroid precursor cells and deranged erythropoiesis in patients with HIV-1 infection.


Cytometry ◽  
2001 ◽  
Vol 43 (4) ◽  
pp. 297-307 ◽  
Author(s):  
Annette J. Schlueter ◽  
Sudershan K. Bhatia ◽  
Xiang Li ◽  
Lorraine T. Tygrett ◽  
Yoshio Yamashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document